Химико-минералогический состав портландцемента

Сырьевые материалы, используемые для производства портландцемента, состоят в основном из окиси кальция, кремнезема, глинозема и окиси железа. В печи эти окислы химически взаимодействуют друг с другом с образованием ряда более сложных соединений, при этом достигается химическое равновесие. Обычно остается лишь небольшое количество химически не связанной окиси кальция. Однако во время охлаждения клинкера равновесие не сохраняется и в зависимости от скорости охлаждения изменяется степень кристаллизации минералов клинкера и количество аморфного вещества. Вещества одного и того же химического состава в аморфном, стеклообразном и кристаллическом состоянии значительно различаются по своим свойствам. Взаимодействие жидкой фазы клинкера с вновь образованными кристаллическими соединениями усложняет структуру клинкера.

Тем не менее цемент можно рассматривать как систему, находящуюся в равновесии, вследствие «замораживания» расплава в состоянии, существовавшем при температуре клинкерообразования. В действительности это предположение делается на основе расчета состава товарных цементов; расчетный состав определяется по известному содержанию окислов в клинкере исходя из предположения о полной кристаллизации соединений в состоянии равновесия.

В действительности силикаты в цементе не являются чистыми фазами, так как содержат небольшое количество окислов в виде твердых растворов. Эти окислы оказывают значительное влияние на расположение атомов, форму кристаллов и гидравлические свойства силикатов.

Кроме основных минералов, таких как мрамор, указанных в табл. 1.1 , в цементном клинкере содержатся в небольшом количестве MgO, ТЮ2, Мп2Оз, К2О и ЫагО. Они обычно составляют не более нескольких процентов от веса цемента. Особый интерес представляют окислы натрия и калия. В дальнейшем мы их называем щелочами. Установлено, что они химически взаимодействуют с некоторыми заполнителями и продукты этих реакций вызывают разрушение бетона (см. главу 7). Щелочи влияют на скорость роста прочности цемента. Содержание щелочей и Мп2Оз можно быстро определить с помощью спектрофотометра.

Минералогическая структура цемента установлен в результате изучения фазового равновесия тройных систем С—А—S и С—А—F, четверной системы С — C2S — C5A3 —C4AF и др. Были исследованы кривые плавления или кристаллизации и вычислены составы жидких и твердых фаз при любой температуре. Фактический состав клинкера в дополнение к методам химического анализа может быть исследован с помощью микроскопа путем измерения коэффициента преломления соединений в виде порошка. Содержание минералов-силикатов может быть определено с помощью микрометра Шэндс при исследовании прозрачных шлифов (аналогично применяемому в петрографическом анализе) в проходящем свете. Полированные и травленые шлифы также могут быть исследованы как в отраженном, так и в проходящем свете. Рентгеновская дифракция порошкообразного вещества может быть использована с целью обнаружения кристаллических фаз, а также для исследования их кристаллической структуры. Находит применение также электронный микроскоп, который дает большое увеличение и обладает значительно большей разрешающей способностью, чем световой

C3S, содержание которого обычно наибольшее, встречается в виде небольших равноразмерных неокрашенных зерен. В процессе охлаждения при температурах ниже 1250° С C3S медленно распадается, но если охлаждение идет достаточно быстро, C3S сохраняется без изменения и является сравнительно устойчивым при обычных температурах.

Известно, что C2S имеет три или даже четыре модификации. a -C2S, которая существует при высоких температурах, переходит при температуре 1456° С в |3-модификацию. |3 -C2S претерпевает дальнейшее превращение в у -C2S при 675° С, но при скорости охлаждения цементов, имеющей место в производственных условиях, в клинкере сохраняется P-C2S в виде зерен округлой формы, обычно показывающих двойникование кристаллов.

С3А образует прямоугольные кристаллы, но в застеклованном состоянии это аморфное промежуточное вещество. C4AF представляет собой твердый раствор ряда соединений от C2F до СбА2Р; принятая формула C4AF является условной, отражающей средний состав этой фазы.

Различные типы цементов в значительной степени отличаются по своему химико-минералогическому составу, который обусловливается соотношением сырьевых материалов. Одно время в США была предпринята попытка контролировать свойства цементов различного назначения установлением предельных количеств четырех основных клинкерных минералов, определенных расчетом по химическому анализу. Этот способ исключил бы многочисленные физические испытания, но, к сожалению, расчетный минералогический состав не является достаточно точным и не учитывает все необходимые свойства цемента и, следовательно, не может заменить непосредственных определений требуемых свойств.

Примерный химические составляющие портландцемента в % следующий: СаО—60—67; SiO2—17—25; А12О3—3—8; Fe2O3—0,5—6; MgO-0,1-4; щелочей —0,4—1,3; SO3—1—3.

Нерастворимый остаток определяют путем обработки цемента соляной кислотой; он характеризует количество примесей в цементе, попадающих главным образом в составе гипсового камня. BS 12:1958 допускает величину нерастворимого остатка не более 1,5% веса цемента. Потеря в весе при прокаливании характеризует степень карбонизации и гидратации свободных окислов кальция и магния в результате атмосферных воздействий на * цемент. Максимальная потеря при прокаливании (при 1000° С), допускаемая BS 12:1958, составляет для цементов, используемых в условиях умеренного климата, 3% и для цементов, применяемых в тропических условиях, 4%. Так как гидратированная свободная известь безвредна, то для определенного содержания свободной извести в цементе повышенная потеря веса при прокаливании в действительности является полезной.

Важно отметить, что минералогическая структура цемента может изменяться в значительной степени даже при сравнительно небольших колебаниях химического состава цемента. В табл. 1.3, по данным Чернина, в графе 1 приводится химический состав типичного быстротвердеющего цемента. Если содержание окиси кальция снижается на 3% при соответствующем увеличении содержания остальных окислов (графа 2), соотношение C3S : C2S значительно изменяется. Химическая структура цемента, приведенный в графе 3, отличается по содержанию глинозема и окиси железа на 1,5% от состава цемента, указанного в графе 1, при этом содержание окислов кальция и кремния остается прежним. Тем не менее данное изменение существенно влияет на соотношение между силикатами C3S : C2S, а также на содержание С3А и C4AF.

Несомненно, что контролю химического состава цемента придается особое значение. У типичных обычных и быстротвердеющих портландцементов общая сумма содержания двух силикатов меняется незначительно, в узких пределах, поэтому различия в составе в большой степени зависят от соотношения между СаО и SiCb в сырьевых материалах.